Back to all projects
Completeddeep-learning

Handwritten Digit Recognition

CNN-based system for classifying handwritten digits using MNIST dataset

June 2025 – July 2025Deep Learning Computer Vision

Tech Stack

PythonTensorFlowPyTorchCNNNumPy

What I Built

  • 1Designed and trained a Convolutional Neural Network (CNN) for digit classification
  • 2Used MNIST dataset (70,000 images) for training and validation
  • 3Achieved high classification accuracy through model optimization
  • 4Visualized training performance and prediction results

Key Metrics

MNIST (70K images)

dataset

CNN

architecture

High

accuracy

Problem Context

This project addressed deep learning computer vision challenges. The goal was to build a robust system that could handle real-world data and produce actionable insights for decision-making.

Architecture & Approach

┌─────────────────────────────────────────────────────────┐
│                     Data Pipeline                        │
├─────────────────────────────────────────────────────────┤
│                                                          │
│   Raw Data ──▶ Preprocessing ──▶ Feature Engineering    │
│                      │                    │              │
│                      ▼                    ▼              │
│              Data Cleaning         Feature Selection     │
│                      │                    │              │
│                      └────────┬───────────┘              │
│                               │                          │
│                               ▼                          │
│                      Model Training                      │
│                               │                          │
│                               ▼                          │
│                      Evaluation & Tuning                 │
│                               │                          │
│                               ▼                          │
│                      Final Predictions                   │
│                                                          │
└─────────────────────────────────────────────────────────┘

Key Lessons

Feature engineering has outsized impact on model performance. Domain knowledge matters more than model complexity.

Cross-validation is essential for reliable evaluation. Single train-test splits can be misleading.

Start simple (Linear/Logistic Regression) before complex models. Baselines provide crucial context.